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We consider a plate made from an isotropic but brittle elastic material, which is used to span a rigid aperture,
across which a small pressure difference is applied. The problem we address is to find the structure which uses
the least amount of material without breaking. Under a simple set of physical approximations and for a certain
region of the pressure-brittleness parameter space, we find that a fractal structure in which the plate consists of
thicker spars supporting thinner spars in an hierarchical arrangement gives a design of high mechanical
efficiency.
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I. INTRODUCTION

In the construction of buildings and implements, optimiz-
ing mechanical efficiency �minimizing the amount of mate-
rial used� has been practiced since time immemorial. Striking
examples may be seen in the flying buttresses and remark-
ably thin vaulted roofs of medieval European cathedrals. The
underlying principles for reducing the mass of masonry were
developed much later however, starting with the concept of
thrust lines �1�.

After Euler �2� studied the buckling of struts, it was rec-
ognized that compression members are in general consider-
ably less efficient than tension members. This line of reason-
ing was pursued in the twentieth century by researchers �e.g.,
�3,4�� who also considered the question of couplings required
to attach different parts of engineering structures to one an-
other. Because of the scaling properties of Euler buckling
and the cost in material for couplings of tension members, it
is generally advantageous to have few compression members
and many long tension members. An efficient structure such
as a space frame will therefore typically resemble a tent in
this regard; a pattern which is also seen in the anatomy of
land animals where compressional limb bones are sheathed
in a finely divided web of tendons and musculature �5�.

In more recent years, the main focus in structural optimi-
zation has switched to computational approaches. Various
classes of problem are considered: for example, under a fixed
set of loads and using a fixed total volume of material, to
minimize the compliance �energy storage� or the maximum
stress in the structure. For trusses, the “ground structure
method” �6� is typically applied, where the initial structure is
specified by a set of n points, and a space frame described by
�a subset of� the complete graph Kn which has these points as
nodes. The cross sections of the beams are then varied �po-
tentially down to zero size�.

For the optimization of solid components, the naive ap-
proach of drilling holes to reduce weight has been brought to
a high degree of refinement with methods such as the
“SIMP” scheme �for “solid isotropic microstructure with pe-
nalization”� �7,8� where voxels of the material are allowed to
have grey-scale values during the optimization process.

These so-called topology optimization methods allow for any
number and shape of holes to emerge from the simulation,
except that a minimum length scale �larger than the voxel
size� is imposed �7� because of the tendency for optimal
structures to contain many fine tension members �4� which
are difficult to manufacture.

As noted above, the tendency towards fine subdivision of
tension members is well known. However a rather different
possibility has emerged from two widely different fields.
This is the idea that fractals �9�, which are well known to
have interesting mechanical properties when they occur in
colloidal flocs �10–12� and have recently been shown to give
highly efficient transport networks �13� might also occur as
optimum mechanical designs:

First it has been noted that trabecular bone has a fractal
architecture, which has been hypothesized to be related to
mechanical efficiency �14�. Unfortunately, more recent work
indicates that this complex microstructure may not be the
result of such a simple optimization �15�.

Second, in paleontology the complex suture patterns of
ammonites have been seen as an adaptation for greater
strength �16,17�; but again more recent work suggests that
fractal morphology is not correlated to life at greater depth
�18�. Note however that this evidence is not conclusive, since
strength and efficiency are different quantities; greater effi-
ciency from fractal design may be demanded by lower avail-
ability of minerals and �as a very tentative extrapolation from
results in this paper� be possible only at shallower depth.

Given the tantalizing possibilities and the complexity of
the systems previously studied, it would be interesting to
construct a problem in mechanical structure optimization
which is simple enough to analyze in depth, yet encompass-
ing enough physics to be nontrivial. Careful analysis might
then suggest whether fractal design principles may indeed
give highly efficient structural solutions.

To this end, we consider the following problem: suppose
we have an aperture in a rigid structure, which we wish to
span with a thin plate of an elastically isotropic but brittle
material �Fig. 1�. Furthermore, suppose that we want this
opening to support a pressure difference, so that the spanning
plate has a tendency to bow or to break. We aim to find the
minimum amount of material required to support this pres-
sure without breaking. We also impose the condition that the
plate is unstressed in the absence of the pressure loading.
Such a situation might arise in different contexts; for ex-*robert.farr@unilever.com

PHYSICAL REVIEW E 76, 046601 �2007�

1539-3755/2007/76�4�/046601�10� ©2007 The American Physical Society046601-1

http://dx.doi.org/10.1103/PhysRevE.76.046601


ample, in the manufacture of silicon membranes for mem-
brane emulsification �19� or the construction of pressure ves-
sels.

II. PRECISE STATEMENT OF THE PROBLEM

Consider a thin plate of elastic material with Young
modulus Y and Poisson ratio �. We assume that when the
plate is not subject to a pressure load, it has no quenched-in
stresses, it lies in the x-y plane, and has a possibly nonuni-
form thickness b�x ,y�.

The plate is attached to the boundary of a rigid aperture,
so that even under load, the out-of-plane deflection and its
gradient are zero at the boundary. We refer to these con-
straints as “cantilever boundary conditions.”

Let L0 be a typical unit of length �for example, of the
same order of magnitude as the size of the aperture�, then we
assume that the plate is thin, in the sense that b /L0�1. Let
us suppose that the plate is now subject to a small pressure
difference P between its two sides, and we define a nondi-
mensional pressure loading parameter p= P /Y.

In order to state the problem, we first need an expression
for the elastic energy of the plate under such pressure load-
ing. We are furthermore interested in the case where the de-
flection of the plate may not be small compared to its thick-
ness, and we will therefore have to consider stretching or
shearing of the middle plane of the plate �20�.

Under these circumstances, a useful approximation is that
of von Karman �20,21�. A simple exposition may also be
found in Ref. �22�, from which we take �with a change of
notation� the results we need below.

Consider a region of the middle plane of the plate near a
point which has coordinates before loading given by
�x0 ,y0 ,0�. Under a load p, the plate will deform, after which
we define the new coordinates of the point under consider-
ation to be

�x0 + u�x0,y0�,y0 + v�x0,y0�,w�x0,y0�� ,

where u, v, and w are assumed to be small and we have
allowed the possibility of out-of-plane deformations w.

The two-dimensional strain tensor of the middle layer af-
ter deformation is given by e with components

exx =
�u

�x0
+

1

2
� �w

�x0
�2

,

exy =
1

2

�u

�y0
+

1

2

�v
�x0

+
1

2
� �w

�x0
�� �w

�y0
� ,

eyy =
�v
�y0

+
1

2
� �w

�y0
�2

.

For a uniformly thick plate �or a plate with sufficiently
slowly varying thickness �23�� the equilibrium deformation
of the middle plane can be obtained by minimizing the en-
ergy U of Eq. �1� with suitable boundary conditions �22�,
where

U = US + UB − Y � dxdy�pw� �1�

and the stretching and bending energies of the plate can be
simply derived from the corresponding expressions in Ref.
�22� as

US =� dxdy
Yb

2�1 − �2�
���Tr�e��2 + �1 − ��Tr�e2�	 , �2�

UB =� dxdy
Yb3

24�1 − �2�
��Tr�H��2 − 2�1 − ��det�H�	 , �3�

where H is the Hessian matrix

H�x,y� =

�2w

�x2

�2w

�x�y

�2w

�x�y

�2w

�y2
� . �4�

In addition to this, we note that the maximum tensile
strain experienced by the material is given by

emax = max
�
�q̂Teq̂ +

b

2

q̂T� �x

2w �xy
2 w

�xy
2 w �y

2w
�q̂
� , �5�

where q̂T= �cos � , sin ��. In this expression, the first term
comes from stretching from in-plane and out-of-plane defor-
mation of the middle plane and the second from stretching
produced by bending of the plate �which is maximal at a
distance ±b /2 from the middle plane�.

In what follows, we assume that the material is brittle, in
that it will fail if it experiences a tensile strain that exceeds a
small number ��1. We therefore have the no-breaking con-
dition

emax � � . �6�

We can now state precisely the problem of finding a me-
chanically efficient plate: for a fixed aperture geometry, and
for each pair of values �� , p�, we wish to find that function
b�x ,y� which minimizes the integral �b�x ,y�dxdy, while at
the same time achieving mechanical equilibrium �minimiz-
ing the energy of Eq. �1�� and subject to the condition of no
breakage in Eq. �6�. In fact, this problem as stated is not
well-posed; we therefore choose the extra restriction �dis-
cussed in Sec. IV A� that ��b��G everywhere, for some
fixed number G.

It is tempting to approach this problem by choosing an
arbitrary function b�x ,y�, minimizing the energy, and then
locally removing or adding material according to whether
emax is greater than or less than �. This is a possible strategy,

FIG. 1. Cutaway view of a thin pressure-supporting plate which
spans a square aperture, and is clamped at the edges of this to a
rigid support.
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but based on the calculations to follow we suspect that start-
ing from a uniform b, this strategy will only produce a local
minimum in the amount of material used.

III. ONE-DIMENSIONAL CASE

A. Solution for cantilever boundary conditions

Let us consider the case where we have a plate which is
infinitely long in the y direction. Furthermore, we impose the
strong restriction that b is a function only of x, the direction
across the plate. This will turn out to be very suboptimal, but
it is an instructive case for developing the argument. Under
these conditions, v=0, while u, w, and b are functions only
of x. The energy per unit length in the y direction of the plate
under pressure becomes

U =
Y

1 − �2 � dx�b

2
��xu�2 +

b

2
��xu���xw�2b

8
��xw�4

+
b3

24
��x

2w�2 − �1 − �2�pw� , �7�

which must be minimized subject to the no-breakage condi-
tion

�u

�x
+

1

2
� �w

�x
�2

+
b

2

 �2w

�x2 
 � � . �8�

As stated above, the material is brittle in the sense that
��1, and we want the plate to be thin �b /L0�1�. We also
expect u /L0�1, w /L0�1, and from the geometry, O�u�
=O�w2�, which we write for brevity as u�w2.

Now, consider first the case where b is a constant and the
plate is a strip given by x� �−a ,a�. Let ��x /a then the
Euler-Lagrange equations obtained by minimizing the energy
of Eq. �7� are

�u

��
= a

b2

a2

�2

12
−

1

2a
� �w

��
�2

, �9�

�4w

��4 = �2�2w

��2 + 12a�a

b
�3

p̃ , �10�

where p̃��1−�2�p and � is the constant of integration of the
Euler-Lagrange equations which is still to be determined
�physically, � has the interpretation that �2b2 / �12a2� is the
strain experienced by the midplane of the plate�.

Noting that w=�xw=0 at x= ±a, and that w is symmetric
about x=0, we find

w =
6ap̃

�2 �a

b
�3��1 − �2� +

2�cosh���� − cosh ��
� sinh �

� , �11�

u = a
b2�2

12a2� −
72ap̃2

�4 �a

b
�6� �3

3
−

2� cosh����
� sinh �

+
2 sinh����
�2 sinh �

+
sinh�2��� − 2��

4�sinh2 �
� . �12�

The condition which determines � is that u=0 at x= ±a,
which gives

1 =
864p̃2

�6 �a

b
�8�1

3
−

2 cosh �

� sinh �
+

2

�2 +
sinh�2�� − 2�

4�sinh2 �
� .

�13�

The Euler-Lagrange equation, Eq. �9� for u shows that the
strain produced by stretching at the middle plane is uniform
over the plate, and therefore the no-breakage condition is

�2b2

12a2 +
b

2a2
 �2w

��2 
 � � . �14�

1. Breakage dominated by stretching: � large

Consider first the case � large, which corresponds to
p̃a4 /b4�1, then bending occurs mainly in thin “boundary
layers” near the edges of the plate �i.e., close to �=1 and �
=−1� which have a width 	��1/�. In this limit, we find

� � �288�1/6p̃1/3�a

b
�4/3

. �15�

From the no-breakage condition of Eq. �14�, we can calculate
the required thickness of the plate. We find that bending and
stretching both contribute significantly in the boundary layer
�but bending is unimportant elsewhere�, and the necessary
minimum thickness bmin is

�bmin

a
� � 2.885p̃�−3/2. �16�

It is also interesting to know � in terms of p̃ and � for the
case when b=bmin, in order to estimate the thickness of the
boundary layers. The result is

� � 0.626�2p̃−1.

Last, consistency with the fact that p̃a4 /b4�1 implies that
p̃��2.

2. Breakage dominated by bending: � small

Next, let us consider the opposite extreme, where break-
age is dominated by bending everywhere; i.e., � is very
small, equivalent to p̃a4 /b4�1. This leads to

� �
8

�35
p̃�a

b
�4

.

There are no boundary layers, and the expression for w be-
comes

w �
ap̃

2
�a

b
�3

�1 − �2�2.

The no-breakage condition is therefore

�2b2

12a2 +
2p̃a2

b2 � � ,

where the first term corresponds to strain from stretching of
the middle layer �both in-plane and out-of-plane�, and the
second term is strain from bending. We find that breakage is
governed only by the bending term in this limit, and
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�bmin

a
� � 21/2p̃1/2�−1/2.

Consistency with p̃a4 /b4�1 leads to p̃��2, and thinness of
the plate �b /a��1 also imposes the condition p̃��.

B. Freely hinged boundary conditions

In the case of � large, the required minimum thickness of
a uniform plate is determined by the thickness needed to
sustain the bending and stretching forces in the thin bound-
ary layers at the edges of the plate. Given more freedom to
design a plate with nonuniform thickness, one might imagine
that the most efficient design would have a larger value for b
in the two boundary layers near the edges, and be thinner
everywhere else. The required thickness of this middle re-
gion could be estimated conservatively from the minimum
thickness required for a plate with freely hinged boundary
conditions. This case is also immediately solvable: we re-
quire that w be symmetrical while u=0, w=0, and �x

2w=0 at
x= ±a. The Euler-Lagrange equations �9� and �10� then give
in the limit of large �

�bmin

a
� � 0.408p̃�−3/2. �17�

The important thing to note is that although the prefactor is
smaller in Eq. �17�, the order of magnitude of all quantities is
the same as for the cantilevered boundary condition case
�Eq. �16��. Even if we were to optimize the mechanical effi-
ciency of the plate by choosing b to be thicker in the bound-
ary layer and thinner in the center of the plate, we would
only achieve a gain in efficiency by a numerical factor of
order unity. We also conjecture that an optimization strategy
comprising removing material where the breakage condition
is not satisfied will converge on a solution of this kind.

The boundary layers we encounter in this case are there-
fore in some sense unimportant; having only a quantitative
and not a qualitative effect on the amount of material needed
to make our pressure-bearing plate. Shortly however, we
shall encounter cases where the presence of boundary layers
�regions where quantities vary rapidly in space� alters even
the scaling of mechanical efficiency with p and �.

C. Order of magnitude behavior for a uniform plate

We can now state the order-of-magnitude behavior of
various quantities �assuming ��−1� for our optimum thin
plate which has either uniform thickness, or boundary layers
at the edges. In what follows, we shall use “�” to denote that
two quantities are the same order of magnitude. We have

�bmin

a
� � � p�−3/2, p � �2,

p1/2�−1/2, �2 � p � � ,
� �18�

where the first case corresponds to a stretching-dominated
and the second to a bending dominated regime.

The maximum deflection, maximum curvature from bend-
ing and maximum strain from stretching �both in-plane and
out-of-plane� are given by

�w�0�
a

� � � �1/2, p � �2,

p−1/2�3/2, �2 � p � � ,
� �19�

b
 �2w

�x2 

max

� � � , p � �2 in b layer,

p�−1, p � �2 out b layer,

� , �2 � p � � ,
� �20�

�2b2

a2 � � � , p � �2,

p−1�3, �2 � p � � .
� �21�

These relations are shown in the top panel of Fig. 2 as an
“order of magnitude” plot. The advantage of the compressed
scale used in this plot is that all crossover behavior is sharp,
and prefactors are irrelevant �indeed even a factor as large as
log10��−1� would be invisible on this scale�. The bottom
panel of Fig. 2 shows the different regimes in the p-� plane.
Because of the different scale, prefactors are now important,
and so the picture must be regarded as schematic �except
very far from the origin at �log10 � , log10 p�= �0,0��.

IV. PLATE WITH PARALLEL SPARS

A. Behavior of a single spar

So far we have analyzed the case where the thickness b is
constant, or �by arguing from these solutions�, the case
where there are narrow boundary layers at the edges of the

FIG. 2. Top figure: order of magnitude behavior for quantities as
a function of pressure, for an aperture spanned by a plate of uniform
thickness. Plotted on this scale, all crossovers are sharp and all
order 1 prefactors are invisible. Bottom figure: schematic picture of
the p-� plane, showing the approximate positions of crossovers in
behavior for this case. The dashed line showing the crossover of
regimes is p��2.
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plate accommodating the local bending forces. However, be-
cause the bending term �Eq. �3�� in the energy �Eq. �1�� has a
prefactor cubic in the plate thickness, we expect intuitively
that it would be more efficient still to design a plate with
narrow, thick �large b� beams or “spars,” which support thin-
ner “panels” between. A simple example of such a design
would be as shown in Fig. 3.

Again, from the form of the energy expression, we would
expect that the design would get more efficient the narrower
�smaller s in Fig. 3� and the taller �larger Gs in Fig. 3� the
supporting spars are designed to be. However, at some point,
very narrow and tall spars are likely to buckle under loading.
In the analysis that follows, we have therefore placed a
simple restriction on the design of the plate, which is both
interesting in its own right, but can also be seen as an attempt
to capture this buckling limitation. The design restriction we
place is that the maximum gradient of the thickness cannot
exceed some set value G, which is of order unity. There is
also a third reason for choosing such a G, which represents a
limitation of the current analysis, rather than a change in the
qualitative behavior of the system. This limitation is that if
the thickness b varies too quickly in space, then Eqs. �2� and
�3� will no longer be valid.

Stated formally the new restriction is that

∀�x,y�:��b�x,y�� � G . �22�

Let us therefore consider a spar which has a diamond-shaped
cross section satisfying this constraint, with width s, length

2L, and loaded under a force f̃ per unit length. We define a
rescaled parameter with dimensions of length to describe this

loading, namely f = f̃ /Y.
In order to write down the energy of this system from Eq.

�1�, we need a further condition on the deformation of the
middle plane. Because we are envisaging a narrow spar, we
take this condition to be that the component of the stress in
the x direction �across the spar� at the middle plane is zero.
Because the x and y directions are still the principal direc-
tions for both the strain and stress tensor, then this leads to
exx=−�eyy and so the energy of the spar is given by

U = Y � dy�Gs2

4
��yv +

1

2
��yw�2�2

+
G3s4

192

��y
2w�2

�1 − �2�
− fw� .

�23�

Defining 
�y /L, the Euler-Lagrange equations for Eq. �23�
are

�v
�


= L
�2G2s2

48L2�1 − �2�
−

1

2L
� �w

�

�2

,

G2s2

48L2

�4w

�
4 =
�2G2s2

48L2

�2w

�
2 +
2f�1 − �2�L2

Gs2 ,

where � is a constant of integration in the Euler-Lagrange
equations for Eq. �23� and needs to be determined. Solving
these with cantilever boundary conditions gives

w =
48L4�1 − �2�f

G3s4�2 ��1 − 
2� +
2�cosh��
� − cosh ��

� sinh �
� ,

v =
�2G2s2

48L�1 − �2�

 −

4608L7�1 − �2�2f2

G6s8�4 �
3

3
−

2
 cosh��
�
� sinh �

+
2 sinh��
�
�2 sinh �

+
sinh�2�
� − 2�


4� sinh2 �
� ,

where the constant of integration � can be determined from

G8s10

L8f2 =
221 184�1 − �2�3

�6 � �1

3
−

2 cosh �

� sinh �
+

2

�2

+
sinh�2�� − 2�

4� sinh2 �
� .

From now on, we consider only the orders of magnitudes of
different quantities, and again there will be two cases.

1. Stretching dominated regime

In the stretching dominated regime, we have ��1, and

� �
L4/3f1/3

G4/3s5/3 ,

so f �G4s5 /L4 and the no-breaking condition �which is
dominated by stretching everywhere except at the ends of the
spar, where bending is also significant� gives

f � �3/2s2L−1G .

Because of the no-breakage condition, the strain from in-
plane and out-of-plane stretching is always less than �. The
maximum amount of bending is


 �2w

�y2 

max

�
L2f

G3s4�
�

L2/3f2/3

G5/3s7/3 ,

which occurs in the “boundary layers” near the two ends of
the spar. The maximum out-of-plane deflection is

w�0� �
L4/3f1/3

G1/3s2/3 .

2. Bending dominated regime

In the case that � is small, we are in the bending domi-
nated regime and we find that

FIG. 3. Schematic for the design of a plate consisting of parallel
spars separated by long narrow panels, and spanning a square ap-
erture of side 2L.
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� �
L4f

G4s5 .

Therefore consistency requires that f �G4s5 /L4 and the no-
breaking condition �which is dominated by bending� is

f � �s3L−2G2.

The maximum amount of bending is given by


 �2w

�y2 

max

�
L2f

G3s4

and the amount of in-plane and out-of-plane stretching is of
order

�2G2s2

L2 �
L6f2

G6s8 .

The maximum out-of-plane deflection is

w�0� �
L4f

G3s4 .

B. Parallel spars supporting panels

Let us suppose we have a plate consisting, as in Fig. 3, of
parallel “spars” separated by thinner “panels.” The parallel
spars also represent a collection of boundary layers for the
function b�x ,y�, in the sense that quantities have a fast varia-
tion as a function of x or y. In contrast to the case discussed
above, these boundary layers produce a qualitative change in
the system’s behavior.

We assume that the entire aperture is a square of side 2L,
and that the spars are of width s, and separated by a distance
2a from neighboring spars. Because the analysis from now
on will focus on orders of magnitude, we shall assume that G
is of order unity, and omit it from the expressions. We will
assume �and later check� that s�a and a�L �the latter, to-
gether with the relative rigidity of the spars, ensuring that we
can treat the panels as infinitely long strips�. The panels have
a thickness b0.

We now calculate the average thickness �b� of the plate
that is required to support a pressure load, where �again in
order-of-magnitude terms�

�b� �
ab0 + s2

a + s
�

max�ab0,s2�
max�a,s�

, �24�

and the second equivalence follows from the fact that the
terms being added �in each of the numerator and denomina-
tor� will in general be of different magnitude.

Because s�a, then over almost all their length, the spars
must support a force per unit length given by f =2ap.

We consider the four cases where the spars and panels are
in the stretching and bending dominated regimes. There are
six conditions which must be applied in each case.

�i� The panels are assumed to be at their most mechani-
cally efficient, which sets b0 as a function of p and a.

�ii� Whether the panels are in the bending or stretching
dominated regime sets a constraint on the pressure.

�iii� The spars are in the stretching dominated regime if
ap�s5 /L4 and the bending dominated regime if ap�s5 /L4.

�iv� The spars must not break �although we do not insist
that they should be at this limit; they may be somewhat over
engineered in this sense�.

�v� The spars must provide significant support, in the
sense that the maximum out-of-plane displacement at the
center of each spar must be much less than the maximum
out-of-plane displacement at the center of each panel.

�vi� There must be at least one spar in the system; in other
words �a /L��1.

These conditions are listed in Table I.
It is a simple, but tedious matter to combine the condi-

tions of Table I with Eq. �24� to obtain the scaling properties
of the optimally efficient solution in each case. The results
are shown in Table II.

Figure 4 shows these behaviors on an order of magnitude
plot, and �schematically� on the p-� plane.

V. FRACTAL DESIGN

A. Two beams at right angles

The parallel spars analyzed above have provided consid-
erable gains in efficiency over a uniform plate, but it is pos-
sible that we have not achieved the global optimal scaling.
One possibility which remains is that we could allow spars to
intersect. In this way, thicker spars may be used to partially
support thinner spars, which together support panels. We can

TABLE I. The six conditions which must be satisfied by spars
and panels for a plate consisting of parallel spars supporting inter-
vening panels. Spars and panels may be either in the bending or
stretching dominated regimes.

Spars in stretching
dominated regime

Spars in bending
dominated regime

b0�ap�−3/2 b0�ap�−3/2

Panels in p��2 p��2

stretching � s

L �� � a

L �1/5

p1/5 � s

L �� � a

L �1/5

p1/5

dominated � s

L �� � a

L �1/2

p1/2�−3/4 � s

L �� � a

L �1/3

p1/3�−1/3

regime � s

L �� � a

L �−1

p1/2�−3/4 � s

L �� p1/4�−1/8

�a /L��1 �a /L��1

b0�ap1/2�−1/2 b0�ap1/2�−1/2

Panels in �2� p�� �2� p��

bending � s

L �� � a

L �1/5

p1/5 � s

L �� � a

L �1/5

p1/5

dominated � s

L �� � a

L �1/2

p1/2�−3/4 � s

L �� � a

L �1/3

p1/3�−1/3

regime � s

L �� � a

L �−1

p5/4�−9/4 � s

L �� p3/8�−3/8

�a /L��1 �a /L��1

ROBERT S. FARR PHYSICAL REVIEW E 76, 046601 �2007�

046601-6



envisage ultimately a hierarchical arrangement with spars of
progressively thinner aspect forming a fractal design, and
supporting panels only at the smallest length scales.

To proceed, we first investigate whether the principle of a
thicker spar supporting a thinner spar can indeed lead to a
gain in efficiency for a structure. Consider therefore a single
spar which is in the bending dominated regime, carrying a

�scaled� force f per unit length, and a point load F̃ at the

center, which we represent by a scaled point force F= F̃ /Y.
The spar or beam must be considered in two sections, joined
at the middle �x=0�, at which point the displacement w and
the first two derivatives of w are continuous,

w�x� = �w+�x� , x � �0,L� ,

w−�x� , x � �− L,0� .
� �25�

Hence, if we have two beams at right angles with widths
s1 and s2, joined at the center, and each carrying a force f per
unit length, they will �in the absence of external point forces�
apply equal and opposite forces F on each other, and their
displacements will be given by the following expressions:

w1
±�x� =

4f

G3s1
4 �x2 − L2�2 ±

8F

G3s1
4 �x 
 L�2�x ±

L

2
� ,

w2
±�y� =

4f

G3s2
4 �y2 − L2�2 


8F

G3s2
4 �y 
 L�2�y ±

L

2
� ,

F = fL� s1
4 − s2

4

s1
4 + s2

4� , �26�

where the point force F in Eq. �26� imposes the constraint
that the beams must have the same displacement w�0� at
their center points.

For this highly symmetrical case, the maxima in curvature
occur either at the ends or the centers of the beams �for more
general cases, there may be maxima between the positions of
application of point loads�. We can therefore write the no-
breakage condition on the first beam as

Gs1

2
��x

2w1
±�x��max =

4fL2

G2s1
3�r4 + 1�

max��5r4 − 1�,�7r4 + 1�� � �

or

s1
3

L3 �
4f

�r4 + 1�LG2�
max��5r4 − 1�,�7r4 + 1�� , �27�

where r�s1 /s2. The result must be symmetric on swapping
the two spars, so

s2
3

L3 �
4f

�r−4 + 1�LG2�
max��5r−4 − 1�,�7r−4 + 1�� . �28�

The total volume of material used to make these beams is
therefore

V = GL�s1
2 + s2

2� , �29�

which we seek to minimize.

FIG. 4. Top figure: order of magnitude behavior for quantities as
a function of pressure for an aperture spanned by a plate consisting
of parallel spars supporting long panels. Bottom figure: schematic
picture of the p-� plane, showing contours �solid lines� of constant
number of spars in the structure. This number increases towards the
bottom left of the figure. Region A is where spars and panels are
bending dominated ��2� p���. Region B is where spars are bend-
ing dominated and panels are stretching dominated ��5/2� p��2�,
and region C is where there are no spars, and the now uniformly
thick plate is stretching dominated �p��5/2�.

TABLE II. The scaling properties of optimally efficient plates
consisting of parallel spars supporting intervening panels. Spars and
panels may be either in the bending or stretching dominated
regimes.

Spars in stretching
dominated regime

Spars in bending
dominated regime

Panels in p��5/2 �5/2� p��2

stretching Spars give �b��Lp3/4�−7/8

dominated no gain � s

L �� p1/4�−1/8

regime in efficiency � a

L �� p−1/4�5/8

Panels in Not �2� p��

bending consistent �b��Lp5/8�−5/8

dominated with � s

L �� p3/8�−3/8

regime conditions � a

L �� p1/8�−1/8
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Equations �27� and �28� have a trivial solution in which
s1=s2 and F=0. The most efficient solution of this kind has
both beams at the breaking limit, so

s1 = s2 = 24/3L�f/L�1/3�−1/3G−2/3, �30�

and uses a volume of material given by

V � 12.699L3�f/L�2/3�−2/3G−1/3. �31�

However, this is not the global optimum, which in fact oc-
curs when r�1.22 and

V � 12.652L3�f/L�2/3�−2/3G−1/3, �32�

and only the thinner of the two beams is at its breaking limit.
We therefore see that although the gains are very modest,

it is nevertheless possible to achieve greater efficiency
through having a thicker beam or spar support a thinner
beam. The next question to address is whether this principle
can be extended to a hierarchical arrangement with thin spars
supporting still thinner spars, until the very thinnest help to
support panels to form a continuous plate with no holes.

B. Hierarchical arrangement of spars

Consider the arrangement of spars as shown in Fig. 5.
Figure 5�a� shows two spars at right angles, and we refer to
this structure as “generation 1.” We choose the spars to have
the same width s1,1 �the first index referring to the “genera-
tion number,” and the second to the type of spar present in
this generation�. Each spar carries a force per unit length
f1= f0 /2. In light of the previous calculation, we know that it
is not optimal to have both spars of the same width; but we
ignore this fact in favor of simplicity of analysis.

Figure 5�b� shows a “generation 2” structure, where we
have two thick spars, just as for generation 1, but their
widths are now s2,1 which may be different from s1,1. In
addition, there are four thinner spars, each with width s2,2.

All the spars now carry a force per unit length of
f2= f0 /4—chosen to approximate the loading produced by
the smaller panels between the spars which will eventually
be present in the structure. Figures 5�c� and 5�d� show gen-
erations 3 and 4, respectively, and we envisage going to large
generation numbers n for certain regions of the p-� plane.

For generation n, we will have two spars of width sn,1,
four thinner spars of width sn,2, and so on, culminating with
2n of the thinnest spars, which each have a width sn,n. The
total number of spars in the generation n structure is there-
fore 2�2n−1�, and each carries a force per unit length �in
addition to the point forces� of fn=2−nf0. Again, this is cho-
sen to mimic the loading on the spars produced by supported
panels, so that f0� pL /4 �although the loading in this final
structure will not be exactly uniform�.

We now analyze the first few generations numerically,
ignoring the possible torsional loadings that spars can exert
upon one another in asymmetrical configurations. We expect
this complication to have minimal effects when G�1, and
so we now specialize to the case G=1.

For generation n, we choose a structure described by the
two parameters ��n� and ��n� defined by

sn,q = L� f0

L
�1/3

�−1/3��n����n��q−1. �33�

We choose ��n� and ��n� so that all the spars satisfy the
no-breaking condition, and the amount of material V that is
used, is minimized. Adding up the total volume of material
in the spars gives

V�n� = 2L3� f0

L
�2/3

�−2/3�2�n�� �2�2�n��n − 1

2�2�n� − 1
� . �34�

Based on experience from the preceding section, we expect
that the most efficient structure of this kind will satisfy the
breakage condition as an equality only for the thinnest spars.
We also expect ��n��0.5 �the thicker spars will not act as
completely rigid supports for the thinner spars�, but we hope
that a hierarchical structure is still achieved, which corre-
sponds to ��n��1.

Table III shows the first few values for ��n� and ��n�
which are found from numerical simulations to minimize
V�n�. The tentative conclusion is that both quantities tend to
fixed, order 1 values as n increases.

If now we assume that ��n� and ��n� do indeed tend to
fixed limits � and � as n→�, then provided the spars remain
much narrower than the panels, and the spars remain in the

FIG. 5. Schematic of a fractal design for a plate spanning a
square aperture. �a� is a “generation 1” structure, with two crossed
spars supporting four panels. In �b�, four thinner spars are added,
which subdivides the remainder of the plate into 16 panels. In �c�
and �d� we show generations 3 and 4.

TABLE III. Values for ��n� and ��n� �in Eq. �33�� which are
found numerically to minimize V�n� �Eq. �34� from the text�.

n ��n� ��n�

1 1.260

2 1.126 0.609

3 1.009 0.644

4 1.078 0.650
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bending dominated regime, we can calculate the average
thickness of the plate. It will be a sum of two terms; one
from the hierarchical structure of spars, and one from the
panels between �which may be in either the stretching or
bending dominated regimes�. For an order of magnitude
calculation, the prefactors are unimportant and we
expect square panels to exhibit the same scaling as the long
thin panels analyzed above. By using Eqs. �34� and �18� we
obtain in the large n limit, and assuming � is an order 1
quantity

�b�
L

� � �2�2�np2/3�−2/3 + 2−np�−3/2, p � �2,

�2�2�np2/3�−2/3 + 2−np1/2�−1/2, �2 � p � � .
�

�35�

If we minimize this as a function of n, we find

2n � �p�ln 2�/�6 ln�2����−�5 ln 2�/�12 ln�2���, p � �2,

p−�ln 2�/�12 ln�2�����ln 2�/�12 ln�2���, �2 � p � � .
�

�36�

�b�
L

� � p�1−�ln 2�/�6 ln�2���	��−�3/2�+�5 ln 2�/�12 ln�2���	, p � �2,

p��1/2�+�ln 2�/�12 ln�2���	��−�1/2�−�ln 2�/�12 ln�2���	, �2 � p � � ,
� �37�

where for each of Eqs. �36� and �37�, the upper expression
corresponds to panels in the stretching regime and the lower
to panels in the bending regime.

We therefore find that the hierarchical arrangement is
more efficient than a uniform plate, provided that �5/2� p
��, but for smaller values of p, a plate of uniform thickness
is most efficient. This is precisely the range over which par-
allel spars are more efficient than uniformly thick plates, so
the next question is whether a fractal structure is more effi-
cient than the parallel spars?

By comparing Eq. �37� with the two expressions for �b� in
Table II we find that there is a critical value �c of �, above
which the parallel arrangement is more efficient, and below
which fractal structures are preferred. The critical value is

�c = 2−1/3 � 0.7937. �38�

Based on the numerical calculations of Table III, it ap-
pears that ��0.65��c, and so �provided ��1 in the math-
ematical sense�, then the hierarchical structure is always
more efficient over the entire range �5/2� p��.

We note however that for small, but finite values of �, the
prefactors are no longer negligible, and it remains a possibil-
ity that there is a region of the p-� plane not too far from the
origin �log10 � , log10 p�= �0,0�, where a parallel arrangement
of spars is preferred.

Last, we note that for the fractal structure, the width of the
thinnest spars is given by

sn,n

L
� �p��1/3�+�ln ��/�6 ln�2���	��−�1/3�−�5 ln ��/�12 ln�2���	, p � �2,

p��1/3�−�ln ��/�12 ln�2���	��−�1/3�+�ln ��/�12 ln�2���	, �2 � p � � ,
� �39�

so sn,n�a�2−nL for �5/2� p�� and �� �0.5,1�, which jus-
tifies Eq. �35� for �b�.

VI. CONCLUSIONS

We have constructed a simple problem in elasticity theory,
in which it is possible to frame the question of optimal me-
chanical efficiency in an easily approachable manner. We
find that it is necessary to consider all regions of the p-�
plane to tackle this problem �where p represents the applied
pressure and � the material’s brittleness� and have used
order-of-magnitude plots as a concise way to present the
asymptotic behavior under the assumption ��1.

After considering various possible forms for the plate in
the problem, we discover regions of the p-� plane where a

fractal design is the most mechanically efficient structure we
have been able to find. This is a structure where thicker spars
act as partial support for thinner spars, and so on until the
thinnest spars �together with all the others� support panels,
which form a continuous plate.

Our analysis has focused on the order of magnitudes of
quantities; this greatly simplifies the algebra, but leaves open
questions about the behavior for small, but finite values of p
and �.
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